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Abstract-A previously developed binary mixture theory for wave guide-type propagation in laminated
composites with periodic microstructure is modified to account for debonding. An interface model of the
Coulomb frictional-type is postulated and the resulting theory is compared with experimental impact data.

1. INTRODUCTION
In [1] a binary mixture theory for wave guide-type propagation was formulated for both
laminated and fiber-reinforced composites with elastic, periodic microstructure. Results using
this theory were observed to correlate well with acoustic velocity data for harmonic wave
propagation, and transient pulse experiments performed in a shock tube. In both instances,
however, the stresses applied to the specimens were of the order of 100 psi, and it was reasonable
to assume that the constituents comprising the components were perfectly bonded at their
interfaces. For more severe impact conditions, it appears likely that the composite might at least
partially debond, even in the regime in which the constituents would be expected to retain their
structural integrity and indeed still behave elastically. This is the eventuality addressed in the
following analysis.

In a recent series of papers by Drumheller [2], Drumheller and Norwood [3], and Drumheller
and Lundergan[4], the debonded plate problem was studied both theoretically and experimen
tally. In [2], it was demonstrated that under dynamic loading, complete debonding with shear-free
(lubricated) interfaces leads to an additional degree of freedom within the composite resulting in
an additional stable mode of stress wave propagation. Drumheller based his analysis on the exact
theory of elasticity and appropriately modified Sve's results for oblique harmonic wave
propagation in periodically laminated plates [5]. The additional degree of freedom inherent in the
completely debonded laminate analysis leads to a requirement for an additional boundary
condition, and [3] addresses this aspect of the problem. The additional boundary condition
suggested by Drumheller and Norwood is one in which the warping of the boundary of the
debonded laminate is related to the average stresses and displacements in the composite
constituents. Reference [4] contains data from a series of experiments which were correlated
with the theory in [3] and additional two-dimensional finite difference computer code
calculations.

An approach quite different from that of [2-4] will be followed in this paper. In place of the
exact theory of elasticity, the mixture theory of [1] will be utilized with essentially a single
modification: The interface shear stress boundary condition in [1] is relaxed, and a frictional
model of the Coulomb-type is hypothesized in its stead. The resulting system of equations is
determinate, and results are seen to correlate well with the experiments.

2. FORMULAnON

Following [l]t, consider a periodic array of two linearly elastic, isotropic, homogeneous
laminae which are initially bonded at their interfaces. A state of plane strain will be assumed in

tFor completeness a number of details in [1] concerning the mixture theory construction are reproduced here.
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the z-direction, as well as wave motion yielding symmetric Ux and antisymmetric Uy distributions
with respect to the y-coordinate within each lamina, where ux and Uy denote displacements in the
x- and y-directions respectively. Consequently, motion of the composite averaged over a typical
two layers exists only in the x-direction, and it is sufficient to consider a typical bi-Iaminate as
illustrated in Fig. 1.

x

Fig. 1. Laminate geometry and coordinate system.

The basic equations for each lamina are

Equations of motion

(2.1a)

(2.1b)

Constitutive relations

(2.2a)

(2.2b)

(2.2c)

where

(J'xx, (J'Xy, (J'yy are components of the stress tensor; p(al, A(a
l
, 1-L (a) denote, respectively, mass

density and Lame constants of material a; t represents time; la) is the local coordinate in the
y-direction with origin at the mid-plane of the a-constituent; and the superscript a :::: 1,2 refers to
the a-constituent.

In addition to equations (2.1) and (2.2), the complete specification of motion requires:

Symmetry

(2.3)

Interface conditions. Consider next the interface r defined by yO):::: h(1), /2l = _h(2) in the
initial configuration. For purposes of this analysis, a Coulomb-Mohr bond failure criteria on r
will be postulated in the form

(2.4)
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where the star refers to r, and A, K are real non-negative constants. The coefficient of cohesion,
A, accounts for any shear strength of the bond which may be present when the normal stress
acting at the interface is tensile rather than compressive; the quantity K represents a coefficient of
friction. Figure 2 illustrates allowable bond states in stress space. Only those states within or on

B

c o·xy

A

Fig. 2. Failure surface in stress space.

o·
yy

the wedge BOe may exist. Should the tensile stress uty exceed a value AIK, the problem is no
longer well posed. t Within the wedge BOe, the bond is perfect and the following interface
conditions shall be imposed:

(2.5)

On oe or OB the interface has debonded; in this case the interface conditions are assumed in the
form:

(2.00)

(2.6b)

The relations (2.6) permit relative translation in the x-direction of the laminate constituents along
r.

If, during the course of a particular problem, the interfacial shear stress causes bond breakage
and then, at some later time, drops within the wedge BOe, the laminae are assumed to rebond
and conditions (2.5) are again invoked. The way in which the debonded model is being used,
particularly the inclusion of the A term, implies that a "healing process" takes place at the
interface. It has been suggested by one of the paper's reviewers that provided the broken bonds
were not exposed to oxygen, are in the fractured state for times on the order of JJ. seconds, and
undergo relatively small displacements, certain polymers, such as PMMA, may be capable of
rebonding. The authors sought confirmation of this point, but were unable to obtain definitive
experimental verification in the literature.

Initial and boundary data. Initial conditions at t = 0, and appropriate boundary data on
x = 0, L where XE (0, L), L :5 00, are necessary to complete the formulation.

3. ANALYSIS

Mixture equations of motion
If (2.1a) is integrated with respect to yea) from 0 to heal, and averaged stresses and

displacements are defined according to

tit is recognized that the conditions of continuity of normal stresses and velocities in the case of delamination will only be
satisfied for the case of relatively long compressive pulses. Instances in which voids form at laminae interfaces will be treated
in a forthcoming paper.



976 G. A. GURTMAN and G. A. HEGEMIER

(3.1)

where h (a) denotes the half thickness of laminae of material a, one obtains

(3.2)

Since a~~) must be continuous across laminae interfaces in either the bonded or delaminated
cases, and is antisymmetric in /"), one notes that

(3.3)

With the aid of (3.3), equations (3.2) can be placed in a binary mixture form following the
introduction of "partial" stresses and densities:

where

(ap) _ (a) (oa) (ap) _ (a) (a)a xx = n a xx , p = n p (3.4)

(3.5)

is the volume fraction of the a-constituent. Utilizing (3.3) and (3.4), the momentum equations
(3.2) become

(3.6a)

(3.6b)

where

(3.7)

is an "interaction term" reflecting momentum transfer from one constituent to another via shear
interaction at laminate interfaces.

Mixture constitutive relations
If (2.2a) and (2.2b) are averaged according to (3.1) and continuity of u/a

) across laminate
interfaces is invoked, one obtains

(3.8a)

(3.8b)

(3.8c)

(3.8d)

where

(3.9a)

(3.9b)

(3.9c)
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Subject to the constraint mentioned in footnotet, equations (3.8) and (3.9) are valid for both
bonded and delaminated laminates. The quantity S represents a constitutive "interaction" term.

Construction of interaction terms
In order to place (3.6) and (3.8) in a determinate binary mixture form, it is necessary to derive

expressions for the interaction terms P and S in terms of the dependent variables ux
Oal

, ux(2a) of
the mixture momentum equations (3.6). To facilitate this task, the construction procedure
outlined in [1] may be employed. The procedure commences by assuming a power-series
expansion fOF stresses and displacements about the mid-plane of each laminae. If one denotes
stresses or displacements in the a -constituent by g(a), then

g(a,(x, /al, t) = g~~i(x, t) +g~~/(x, t) + .

+g~~?(x, t)/a)" /n! + . (3.10)

It is noted that the series (3.10) need not be convergent, but only asymptotic in a parameter E as
E ~ 0, where E represents the ratio of typical micro-to-macro-dimensions of the composite.

Substituting (3.10) into (2.1) and (2.2) and equating terms of similar order of y(a l
, one obtains

differential-recurrence formulae for the coefficients g~~?:

(3.lla)

(3.llb)

(3.llc)

(3.lld)

(3.lle)

Equations (3.lla), (3.11c,d) apply for n = 0, 2, 3, ... , whereas (3.llb), (3.lle) are valid for n = 1,
3, 4, .... It is noted that

(3.11f)

(3. 11g)

Conditio,ns (3.1lf,g) follow from symmetry or asymmetry of appropriate stresses and
displacements.

Using equations (3.11), the series (3.10) can be telescoped and written

g<al(x, /a>, t) = (~..p~~?(X, t)/a)" /n !)uxoa ) + (~.4l~~?(X, t)/al"In !)a~~P) (3.12)

where ..p~~? and .4l~~? are linear differential operators with respect to x and t.
As in [1], the objective here is the development of a first order mixture theory. Consequently

it will be necessary to derive only the first term or two of the foregoing operators. Details
concerning the complete determination of all operators (and resulting higher order theories for
the bonded case) can be found in [6-8].

Now, let the characteristic dominant signal wavelength of wave motion be I, and the typical
composite microdimension be h (I) + h (2). Consider the nondimensional variables

g= xII, tal = y(a)/(h Ol + h(2),

r= tco/I, E = (h O) +h(2)II,

(3.13)

where Co denotes a representative "mixture" velocity. Then, if XE(O, I), tE(O, Ilco), we have
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~e(O, I), Te(O, I); i.e. the typical macrodimension is now 0(1) whereas the typical microdimension
is O(e).

With the aid of the recurrence relations (3.11), the nondimensional variables (3.13), and the
premise that I may be selected such that a{() = 0(1), aT () = 0(1), where () represents ux(nal or
a~~a), the stress continuity condition a~I;(x, h(1), t) = a~2;(x, _h(2\ t) can be written

As in [I], it will be assumed here that e 2
~ 1. Consequently the approximation

(la) l2a)a yy =:::: a yy

is adopted, whereupon (3.8c,d) yield

where

E == E~!/ + E~~).
n n

Substitution of (3.16) into (3.8a,b) furnishes

where

(3.14)

(3.15)

(3.16a)

(3.16b)

(3.17a)

(3.17b)

(0;)2

C = n(n)E la, __A_
an E '

A(a)A (/3)

Ca/3 = -E-' (ex,{3 = 1,2; ex ~ {3). (3.l7c)

Equations (3.17) constitute first order mixture-constitutive equations.
Finally, to obtain a first order expression for P in the case of a bonded interface, multiply

(2.1b) by y(a) and integrate as follows:

!c
h(.' [ (n)]

_1_ yla) a (a)u la)+ au la)_ a xy

h (0:) y X X Y (0:)

o ~

dy =0. (3.18)

Upon expanding (axu,'a)-a~~»/~(a) in powers of y(a) according to (3.10), and subsequently

integrating by parts, one finds

h (a)' 1
(a)( hla» laa) + (a fa) (a) ) + 0

U x x, ,t - U x -3- xU y(1) - ~ (a) a xy(1) ••• = . (3.19)

With use of the recurrence relations (3.11), the higher order terms in (3.19) may be grouped in the
form

1 (1 + (a) 2+ ) (a)( h(a) )] 0
- ~ la) 7'/2 e ... a xy x, , t = (3.20)

where 7'//3(a) are second order differential operators in ~ and 'T. As before, since e 2
~ 1, all 0«(;2)

terms in (3.20) shall be neglected. Under this approximation, and following use of (3.9b) and (3.3),
one finds
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e\~ef h(2) ( 1 )
~~'I.'3-t /2),I)-Ux(2a)+3 aXU~-1.t(2)(J'~y ==0.
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(3.21)

..ative of equations (3.21) with respect to t, and applies the interface

a,ux(l)(x, h(l), t) == 8,ux(l)(x, -h(l\ t)
e ~S'.

\\ O\\'~., == a,ux(2)(x, h (2), t),
CO\\'

expression can be solved for (J'~y as follows:

(3.22)

(3.23)

If ,/ <111, then O(E 2
) terms in (3.23) can be neglected. Under this approximation, the interaction

term P == (J'~y/(h(l)+ h(2») takes the form

(3.24)

if 1(J'~y 1< I(J'~YCR I.
If debonding has occurred, then equations (2.6b), (3.7), (3.21) lead immediately to the following

expression for the interaction term P:

P _ (A - K(J'~y) (8 (la) 8 (2a»)
- (h (I) + h(2») sgn 'Ux - lUx (3.25a)

if 1(J'~y1== I(J'~YCR I.
Here (J'ty == (J'~l:(X, h Ol , t) == (J'~2:(X, -h(2), t). But, using (3.12), (J'~~) and (J'~~a) can be shown to

differ by O(E
2
). To first order, therefore, (3.15) and (3.8) yield

(3.25b)

4. COMPARISON OF NUMERICAL AND EXPERIMENT AL RESULTS

The momentum equations (3.6), interaction relations (3.25a-3.25b), failure criteria (2.4), and
constitutive equations (3.17) define a complete set of mixture equations for wave propagation in
both bonded and delaminated composites. Unlike the analysis of a perfectly lubricated
delaminated wave guide presented in [3], no additional boundary conditions need be specified.
This is due to the fact that in the case in which friction forces give rise to momentum coupling
between laminae, warping of the boundary remains a localized phenomena and is not transmitted
throughout the interior of the delaminated composite. Specification of either stresses,
displacements, or velocities in each laminate at x == 0, L therefore, supplies the necessary
boundary conditions. In the following, calculations with L == 00, quiescent initial data, and
velocity boundary conditions on x == 0 are described.

A series of experiments dealing with delaminated plates were reported by Drumheller and
Lundergan in [4]. Their composites were composed of alternating layers of Polymethyl
methacrylate (PMMA, Rohm and Haas Type A) 0·762 mm thick, and 6061-T6 aluminum
0·792 mm thick. The laminae of the composite were oriented perpendicular to the impact plane,
and struck by a projectile fired from a 10 cm bore light gas gun. An aluminum buffer plate 1·0 cm
thick was placed at the rear of the composite to improve planarity of the transmitted wave front.
A transparent Dynasill00 window followed the buffer, and a thin mirror was vapor deposited at
the buffer window interface. The motion of this mirror was monitored to within ±1·5 x 10-5 mm
by means of a displacement interferometer. The experimental configuration, reproduced from [4J,
is depicted in Fig. 3. Table 1 summarized the shot matrix.
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SPECIMEN MOUNTING Rlt-.~

PROJECTIlE BODY

Fig. 3. Experimental arrangement for Sandia experiments (reproduced from [4]).

1.;"1)(::'1.1..:11
1\0.

5

Table I. The experimental configurations*

COlLl'\,.si tC' Proipct1Je
Tl:l~ 1 .:v::-'S V('l tlCJ r:y Thicknc:-.s

(''-''.1 ::,:". ::011 (C.ll/~ ;,Qc) (el')

0.2:,1, P,] ;l~ j 1au:], D. GO) 3:;~, 1.634

0.776 Alu Ii nt: '\ 0.00He0 1. 631

0.306 .\J l;<"iI:tl'il O.DOllH 1.571

O. CO 3 P~,l' L\ 0.C01118 0.691

0.805 P:·I'·I,\ 0.0030n 0.694

0.812 'ten 0.001289 0.975

0.810 Aluni:1UJ'l 0.001330 0.656

0.809 AJ ll:,;illll,;l 0.001060 0.164
'---. . ~ ...J

flIt} all experiments the buffeT plate h"aS 1 em thick. The
bond thjcknesse~ w~rc all less t]lan 0.0002 em tJliek.

tExperimcnt 1 exhibited excessive flyer tilt and Drumheller
and Lundergan considered tile data useless.

The analysis described in Section 2 was coded in finite difference form and solved using a
UNIVAC 1108 electronic computer. Material properties for the composite laminates, flyer plate
material, buffer and window materials are listed in Table 1. Input to the computer code required
only the material properties of all constituents, geometries of the test configuration, and flyer
impact velocity. Numerical values for A and K were determined by a parametric study on the
results of experimental shot number 2. They were found to be A = 0·01 X 109 dynes/cm2 and
K = 0·50. All other correlations were performed using these values. Results are depicted in Figs.
4-10. Absolute arrival times were not measured during the gas gun shots, and the origin of time
scales on the experimental traces corresponded to initial motion of the aluminum Dynasil 100
interface. These traces were overlaid on the calculated results more or less at first peak arrival.
The absolute times in all figures correspond to those predicted by the theory. As can be seen,
agreement is generally excellent. Both theoretical and experimental results clearly show the
effects of bond breakage and delamination. This manifests itself through the appearance of a
precursor at the front of the wave profile (see Figs. 4-9), and greatly reduce oscillations behind
the wavefront when compared with both theoretical and experimental results for rigidly bonded
waveguides (see [1]).

While no experimental determination of interfacial shear stress was made directly in [4], it
was possible to monitor this quantity in the code calculations. Figure 11 illustrates the behavior of
(T~y as a function of time for experimental condition 1 at a location 0·406 cm behind the
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composite's front face. An identical calculation was performed assuming perfect bonding, and is
included in Fig. 11 for purposes of comparison. According to the calculations, the interface
underwent slippage (i.e. shear stress was on the failure surface COB) from 0·693 /-Lsec to
1·14 f.Lsec following initial flyer impact. Before and after these times, the shear stress fell within
the failure surface, and the bond was rigid. The average velocity profiles at x = 0·406 cm for
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Fig. II. Calculation of interfacial shear stress for experiment No.1 (x = 0·406 cm).
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Fig. 12. Calculation of average particle velocity for experiment No. I (x = 0·406 cm).

experimental condition 1 are depicted in Fig. 12 for both the rigid bond and partially delaminated
cases. These indicate a lower peak velocity when the laminate experiences bond breakage and a
reduced frequency of oscillation following passage of the wavefront.
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The failure and slip model hypothesized in this paper appears plausible from a physical
standpoint, and while quite elementary, yields excellent correlation with the experimental results.
Clearly however, it is only one of many such models which might be devised. Only direct
measurements will suffice to totally resolve the question as to the correct formulation of the
interlaminar shear stresses.
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